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Abstract.—We present the first regional trends in anuran occupancy from North American Amphibian Monitoring 
Program (NAAMP) data from 11 northeastern states using 11 years of data.  NAAMP is a long-term monitoring program 
where observers collect data at assigned random roadside routes using a calling survey technique.  We assessed 
occupancy trends for 17 species.  Eight species had regional trends whose 95% posterior interval did not include zero; of 
these seven were negative (Anaxyrus fowleri, Acris crepitans, Pseudacris brachyphona, Pseudacris feriarum-kalmi complex, 
Lithobates palustris, Lithobates pipiens, and Lithobates sphenocephalus) and one was positive (Hyla versicolor-chrysoscelis 
complex).  We also assessed state level trends for 103 species/state combinations; of these, 29 showed a decline and nine 
showed an increase in occupancy. 
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INTRODUCTION 
 

The scientific community became concerned about 
amphibian declines as a global issue in the 1990s, 
though early reports were primarily anecdotal evidence 
(Blaustein and Wake 1990; Wake and Morowitz 1991; 
Phillips 1994; Drost and Fellers 1996).  Quantitative 
evidence from long-term monitoring using standardized 
methods was needed  (Pechmann et al. 1991).  The North 
American Amphibian Monitoring Program (NAAMP) 
was established in response to this information gap 
(Weir and Mossman 2005). 

The NAAMP survey design and goals are similar to 
the North American Breeding Bird Survey (BBS), a 
long-term monitoring program for birds begun in the 
1960s that provides avian population trends used by the 
avian conservation community (Bystrack 1981; Robbins 
et al. 1986, 1989; Sauer et al. 2003; North American 
Bird Conservation Initiative 2009).  The intent of 
NAAMP is to provide for frogs a long-term monitoring 
program that can assess population trends and be of 
conservation value in a manner similar to what BSS 
provides for birds and their conservation.   

The NAAMP survey design is similar to BBS in that 
both are surveys conducted along random roadside 
routes with a series of listening sites from which 
volunteer observers collect observational data (Bystrack 
1981; Robbins et al. 1986; Weir and Mossman 2005).  
Both surveys also have a broad geographic scope; 
NAAMP surveys are conducted in over 20 states mainly 
in states east of the Mississippi River or bordering it, and 

BBS has even broader coverage.  Both surveys rely on 
volunteer observers, and are managed by the U.S. 
Geological Survey (USGS) in cooperation with multiple 
state partners (and international cooperation in the case 
of BBS). 

The surveys have their differences.  The BBS 
observations are conducted during daylight hours and are 
based on sight and sound, with observers reporting the 
number of individual birds seen or heard at each 
listening site (Bystrack 1981; Robbins et al. 1986).  The 
NAAMP surveys are conducted during evening hours 
when many frog species are most vocal; as such the 
survey relies solely on sound (Weir and Mossman 2005).  
The NAAMP observers report calling activity for each 
species using a 1−3 rating system as an index to 
abundance, rather than attempt to count individuals of 
each species.  

Analyses of NAAMP data have been based mainly on 
observed presence-absence, because observed presence 
is regarded as unambiguous evidence of species presence 
(but see Discussion).  In addition, methodologies exist 
(“occupancy models”) which allow for the simultaneous 
modeling of both occurrence probability and detection 
probability (MacKenzie et al. 2002, 2006).  Previous 
analysis of NAAMP data provided individual state 
trends for anuran species (Weir et al. 2009), but this 
modeling framework did not allow for assessing regional 
trends in occupancy.  For this paper, our objectives are 
to first develop an occupancy modeling framework that 
allows reporting regional trends, while also estimating 
trends for individual states within the region, and 
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secondly to estimate trends of anuran species for the 
Northeast region as a whole, as well as separately for the 
individual states in the region. 
 

MATERIALS AND METHODS 
 

The NAAMP surveys were conducted along random 
roadside routes where observers identified species by 
their unique breeding vocalizations.  Each route was 
composed of 10 sites spaced at least 0.8 km apart and 
routes were typically visited several times per year 
corresponding to the calling phenology of anurans for 
the state (Weir and Mossman 2005; Weir et al. 2009).  
At each site, observers listened for five minutes and then 
reported the species that were detected using a calling 
index to rate the level of calling activity from one to 
three, where one indicated individuals calling with no 

overlap, two indicated intermediate level, and three 
indicated a full chorus (see Weir and Mossman 2005 for 
further protocol description).  In addition, observers 
reported some environmental data (e.g., air temperature, 
time of the survey).  

We used NAAMP data from 11 northeastern states: 
Delaware, Maine, Maryland, Massachusetts, New 
Jersey, New Hampshire, New York (limited to Hudson 
River region), Pennsylvania, Vermont, Virginia, and 
West Virginia (Fig. 1).  Most states had 11 years of data 
(2001−2011; see Table 1).  Beginning in 2006, observers 
were required to pass an online frog call identification 
quiz (USGS Frog Quiz, Available from 
http://www.pwrc.usgs.gov/frogquiz [Accessed 28 
September 2012]).  There were 349 routes with data 
collected during this time period.  Typically, observers 
were asked to survey a route three to four times per year, 

 
FIGURE 1.  The 11 northeastern states (USA) in which NAAMP surveys were conducted (gray). 

 
 

TABLE 1.  Total number of surveys conducted and number of sites surveyed per year in each state.  New York did not start surveying until 2008; 
Vermont did not conduct surveys in 2007.  
 

State 
Number of 

Surveys 
Survey Year 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Delaware                365 140 90 110 140 140 120 80 90 150 120 110 
Maine                     1097 500 470 420 530 470 310 320 230 200 250 310 
Maryland                707 190 210 170 200 190 60 80 70 80 100 130 
Massachusetts        529 150 170 130 100 140 100 190 160 130 170 120 
New Hampshire     343 140 140 120 120 140 80 90 30 40 50 80 
New Jersey*           676 90 70 480 350 400 240 250 240 230 210 300 
New York 334 - - - - - - - 50 210 150 220 
Pennsylvania          310 220 140 140 80 10 100 80 60 70 110 150 
Vermont                 124 70 60 40 40 30 40 - 40 30 80 50 
Virginia                  354 160 220 160 120 130 70 110 90 90 110 100 
West Virginia         459 320 310 160 220 200 110 110 110 160 100 50 
Total 5,298            

 
*In 2003, New Jersey increased the number of routes in the state. 
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corresponding to the calling phenology of species in 
their state.  Routes were surveyed more or less 
frequently, dependent on observer availability, the 
number of observers assigned to a given route, and the 
number of additional surveys conducted by observers.  
Routes that were surveyed ranged from a single survey 
in a year to a maximum of 18 surveys per year.  For the 
Northeast in the 11-year period examined here, there 
were 5,298 surveys conducted.  Since each route had 10 
listening sites (referred to as “stops” in the NAAMP 
survey), this would result in 52,980 site visits if all 10 
sites were visited on every survey.  Occasionally a site 
was not surveyed (e.g., road block, weather 
deterioration), so the actual number of site visits was 
52,604. 

For each site visit an air temperature was recorded or 
estimated.  For most surveys observers reported air 
temperature collected at the site (96% of site visits).  In 
some cases, observers omitted air temperature at one or 
more sites on their route on the survey night.  For any 
sites missing air temperature data, we used the average 
air temperature calculated using their provided readings 
(3% of site visits).  In a few cases observers did not 
report air temperature for any sites on the route (1% of 
site visits); we estimated the air temperature at these 
sites using the nearest weather station for the survey date 
and time.  We used Wunderground’s Weather History 
website (Available from 
http://www.wunderground.com/history/  [Accessed 28 
September 2012]) to find the town nearest to the route’s 
start point and estimated the air temperature by 
averaging the air temperature reported for the hour of the 
start and end of the survey. 

Sunset time varies by date and location.  We used R 
(Available from http://www.r-project.org  [Accessed 28 
September 2012]), an open source statistical software, 
with its maptools package to calculate sunset time using 
the survey date and the route’s start point, adjusted for 
Daylight Savings Time when necessary.  Observers 
reported the time the survey started and ended for the 
route, and optionally reported start time at each site.  If 
observers reported start time for a site visit we used it 
(70% of site visits), otherwise we estimated the site visit 
time based on the other times provided (30% of site 
visits) using a custom Java program.  We converted site 
visit start times into minutes after sunset (site visit start 
time – sunset time).  Although observers were instructed 
to start surveys 30 min after sunset or later, some site 
visits occurred prior to sunset (2% of site visits).  

Occasionally a site or whole route must be retired 
(e.g., safety issue), but at any given time a route had 10 
sites.  In this dataset there are 3,528 unique sites.  Of 
these, 128 sites were retired and replaced; in analyses 
these are treated as separate sites.  All routes were 
considered to be within the species range for five species 
or species complexes with widespread distribution in the 
Northeast: Hyla versicolor-chrysoscelis complex, 

Pseudacris crucifer, Lithobates catesbeianus, Lithobates 
clamitans, and Lithobates palustris.  For the H. 
versicolor-chrysoscelis complex, we combined 
observational data reported as Hyla versicolor, Hyla 
chrysoscelis, or the species complex. 

For species with more limited distributions, sites were 
considered to be within the species range if any portion 
of the route fell within generalized species range maps 
(Fig. 2).  Only routes within the range were used in 
analyses for the remaining 12 species or species 
complex: Anaxyrus americanus, Anaxyrus fowleri, Acris 
crepitans, Hyla andersonii, Hyla cinerea, Pseudacris 
brachyphona, Pseudacris feriarum-kalmi complex, 
Lithobates pipiens, Lithobates septentrionalis, 
Lithobates sphenocephalus, Lithobates sylvaticus, and 
Lithobates virgatipes.  For the P. feriarum-kalmi 
complex, we combined observational data reported as 
Pseudacris feriarum, Pseudacris kalmi, or the species 
complex. 

 
Model development.—We modeled detection 

probability and site occupancy using multi-season 
occupancy models (MacKenzie et al. 2003), 
implemented using a Bayesian analysis framework 
(Royle and Kéry 2007; Kéry and Schaub 2012, p. 436) 
in WinBUGS (Available from http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml [Accessed 
28 September 2012]).  These models accommodate 
explicit modeling of factors that influence both detection 
probability and site occupancy at the level of the 
NAAMP stop.  

A number of factors are thought to influence detection 
probability (see Detection probability models below).  
To evaluate these factors, we considered logit models of 
the form: 

 

Eq (1) 



K

k
tjikk utjip

1
],,[0]),,[(logit   

 
where u tjik ],,[ is the value of (detection) covariate  

k  =  1,2,…,  K  for the observation collected at site i (a 
specific route/stop combination) and sampling occasion j 
within year t.   

Because sampling occurred over 11 years, we 
accommodated explicit occupancy dynamics which 
allowed the occupancy status of sites (z[i,t] = 1 if site “i” 
is occupied in year t) to change from occupied to 
unoccupied and vice versa.  The full model as described 
by MacKenzie et al. (2003) and Royle and Kéry (2007) 
accommodates both “extinction” (complement of local 
survival) and “colonization” parameters according to a 
Markovian model of the following form: 

 
Eq (2)  ]),[(~],[ tiBernoullitiz   
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With 
 
Eq (3)        ])1,[1(])1,[(],[  tiztizti   

 
Where = “local survival probability,” is the probability 

that a previously occupied site (i.e., at time t-1) remains 

occupied at time t, and γ is the colonization probability; 
i.e., the probability that a site unoccupied at time t-1 
becomes occupied at time t.  In practice,   and  may 

both be year-specific.  In our analysis, we wanted to 
allow geographic specificity in the occupancy dynamics 
parameters (at the level of the state) in which case a fully  

FIGURE 2.  Northeastern distributions of the 12 species with limited distributions in the region. Black shading indicates areas considered within 
the range of each species.  Range maps similar to Conant and Collins (1998) were created by modifying USGS National Amphibian Atlas 
(Available from http://www.pwrc.usgs.gov/naa [Accessed 28 September 2012]) county level distribution maps.  
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parameterized model would involve 110   parameters 

([years -1] times states) and 110 γ parameters.  To 
achieve a more economical model parameterization, we 
assumed only state-specific values of the parameters, 
and we adopted the autologistic formulation of the 
model described by Royle and Dorazio (2008, p. 311) in 
which  [i,t] is modeled on the logit-scale according to: 

 
Eq (4)  
 

]1,[])[(1])[(0]),[(logit  tizistateaistateati
  

where, under this parameterization, the local survival 
rate for state s is logit-1(a0[s] + a1[s]) and the local 
colonization rate for state s is logit-1(a0[s]).  

 
Detection probability models.—We considered 

models that allowed detection probability to vary in 
response to: (1) minutes from sunset; (2) day-of-year; (3) 
temperature; (4) latitude; and (5) latitude interacting with 
day-of-year.  Covariates were modeled according to Eq. 
(1).  Each of factors 1−4 were considered to be quadratic 
terms which allows for a distinct optimum in detection 
probability as a function of the covariate (Weir et al. 
2005).  In addition, because we expect the optimum to 
vary geographically, we included an interaction of each 
of the covariates with latitude.  

 
Model selection.—We used the model indicator 

variable approach of Kuo and Mallick (1998) to identify 

the best model (see also Royle and Dorazio 2008, p.109 
for an example involving occupancy models).  This 
approach allows calculation of posterior probabilities for 
each model.  

 
Trend estimation.—To characterize state-level trends, 

we computed N[s,t] = “the number of occupied sites” by 
summing of the occupancy state variables (z(i,t)) for all 
NAAMP stops within each state “s”, and for each year 
“t”.  This was converted to proportion of occupied sites 
by dividing by the number of stops in each state.  We 
define this time-series of N[s,t] values to be the 
“trajectory” (note: the term “trend” is usually used in the 
context of a scalar summary of change over time).  

We summarized this trajectory using a linear least-
squares fit (Weir et al. 2009) to the posterior samples of 
the trajectory N[s,t] for t = 1,2,…,11.  We refer to the 
slope of the least-squares fit as the trend.  This 
calculation was done by post-processing the MCMC 
output in R (the R script is provided in Appendix 1) 
using the R function lsfit().  For each state we report 
both the set of estimated N[s,t] values and the trend (the 
linear fit; see results).  If the 95% posterior confidence 
interval for the least-squares trend did not include zero, 
then we conclude a positive or negative trend in 
occupancy.  

To compute the regional trend, we computed the sum 
of N[s,t] over all the states, creating the regional 
trajectory N[t] = ƩsN[s,t].  The regional trend was 
computed by a least-squares fit to the time-series of N[t] 
values.  We computed the percent annual change from 

TABLE 2.  Posterior summaries (posterior mean, 2.5 and 97.5 percentiles) of regional occupancy trends (slope of the least-squares fit) for 17 
anuran species or species complexes.  Shown in bold text are the trends for which the 95% posterior interval does not include 0.  The annual 
percent change was computed based on the estimated trend relative to the intercept under the linear trend model, and also using the geometric 
mean rate of change following Link and Sauer (1998).  Species names are abbreviated in the table as follows: A. americanus (Aame), A. fowleri 
(Afow), A. crepitans (Acre), H. andersonii (Hand), H. cinerea (Hcin), H. versicolor-chrysoscelis complex (Hvcc), P. brachyphona (Pbra), P. 
crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus (Lcat), L. clamitans (Lcla), L. palustris (Lpal), L. pipiens (Lpip), L. 
septentrionalis (Lsep), L. sphenocephalus (Lsph), L. sylvaticus (Lsyl), and L. virgatipes (Lvir). 
 

Species Code Slope 2.5% 97.5% 
Percent change 

linear trend 
Percent change 
geometric mean 

Aame -0.00273 -0.00990 0.00343 -0.42635 -0.413152 
Afow -0.00940 -0.01556 -0.00284 -3.84337 -3.878157 
Acre -0.01170 -0.01847 -0.00558 -9.4525 -9.303738 
Hand -0.01164 -0.02681 0.00565 -4.34226 -4.096254 
Hcin 0.00543 -0.00280 0.01417 1.959222 1.956803 
Hvcc 0.00769 0.00306 0.01198 1.253375 1.620385 
Pbra -0.01131 -0.02174 -0.00103 -3.17322 -3.508903 
Pcru 0.00114 -0.00091 0.00366 0.12513 0.1358696 
Pfkc -0.03234 -0.04066 -0.02456 -11.1835 -10.44718 
Lcat -0.00352 -0.00917 0.00094 -1.09386 -1.135277 
Lcla -0.00191 -0.00722 0.00233 -0.38481 -0.331859 
Lpal -0.00447 -0.00865 -0.00034 -2.27715 -2.429424 
Lpip -0.00941 -0.01761 -0.00132 -10.6265 -10.67778 
Lsep -0.00252 -0.01112 0.00757 -1.39488 -1.766831 
Lsph -0.00987 -0.01894 -0.00181 -3.9634 -4.468922 
Lsyl 0.00214 -0.00488 0.00937 0.49102 0.5678909 
Lvir 0.00046 -0.00697 0.00649 0.362883 -1.620976 

   
 

Average -2.82177 -2.929265 
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these summary results using two methods.  For method 
1, we used the slope from the linear trend model divided 
by the intercept of the model.  For method 2, we 
computed the geometric mean rate of change following 
Link and Sauer (1998) which is currently a standard 
method of trend reporting for the North American 
Breeding Bird Survey.  This summary is: 

Eq (5)      % annual change  
10

1

]1[

]11[










N

N  

 
Model fitting.—We used the package WinBUGS to fit 

the models for each species adopting code from Kéry 
and Schaub (2012, p. 436).  We used the R statistical 
software, and the R2WinBUGS package to carry-out 
MCMC using WinBUGS (see Appendix 1 for R script).  
We obtained posterior samples from 3 Markov chains 
run for 4,000 iterations with a burn-in phase of 2,000 
iterations, making it a total of 6,000 iterations, and 
initiated with random starting values.  We assessed 
convergence of the model parameters using the Rhat 
statistic (Brooks and Gelman 1998) for the monitored 
values of N[s,t].  The average Rhat values (averaged 
over N[s,t] values) were less than 1.2 for all species, 
which indicated satisfactory convergence of the Markov 
chains.  

 
RESULTS 

 
We report Northeast regional occupancy trends for 17 

species (Table 2); the top 10 models for each species are 
shown in Appendix 2.  The average linear trend of our 

regional trends for all species was -2.82%, and the 
average rate of change (geometric mean) of our regional 
trends for all species was -2.93%.  Eight species had 
trends whose 95% posterior intervals did not include 
zero (we refer to these as “significant” even though this 
is not strictly the conventional meaning of that term; Fig. 
3; Table 2).  Seven species show decreasing trends (A. 
fowleri, A. crepitans, P. brachyphona, P. feriarum-kalmi 
complex, L. palustris, L. pipiens, and L. sphenocephalus) 
and one exhibited an increasing trend (H. versicolor-
chrysoscelis complex).  

We also determined occupancy trends at the state level 
(Table 3).  We were able to assess trends for 103 
species/state combinations.  Of these, 29 species/state 
combinations showed a significant declining trend in 
occupancy, whereas nine species/state combinations 
showed a significant increasing occupancy trend (Table 
3; Fig. 4).   

For toads, the regional result was significant decline 
for one species, A. fowleri.  At the state level A. 
americanus showed significant decline in two states 
(Maine and Massachusetts) and A. fowleri in one 
(Maryland).  For treefrogs and their allies, A. crepitans 
showed significant declines in two states (Maryland and 
Virginia) as well as regionally.  One state, Delaware, 
showed a significant increasing trend for H. cinerea.  
The H. versicolor-chrysoscelis complex showed a 
significant increasing trend regionally and in three states 
(Delaware, Maryland, and West Virginia), but two states 
(New Hampshire and Pennsylvania) showed significant 
decreasing trends.  Pseudacris brachyphona showed a 
regional decline, though no state trends were significant.   

FIGURE 3.  Annual estimates of occupancy for eight species with negative trends (95% posterior interval did not contain zero).  Black line is the 
estimated occupancy rate, while the dotted line is the observed occupancy.  The eight species or species complexes are: A. fowleri (Afow), A. 
crepitans (Acre), H. versicolor-chrysoscelis complex (Hvcc), P. brachyphona (Pbra), P. feriarum-kalmi complex (Pfkc), L. palustris (Lpal), L. 
pipiens (Lpip), and L. sphenocephalus (Lsph).   
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Pseudacris crucifer had significant trends in three states, 
with Delaware showing an increase while Maine and 
Pennsylvania showed a decrease; the regional trend was 
positive but not significant for this species.  The P. 
feriarum-kalmi complex had significant decreasing 
trends regionally and in five states (Delaware, Maryland,  
New Jersey, Virginia, and West Virginia).  There were 
no significant trends for H. andersonii. 

For ranids, L. catesbeianus had six significant results 
with five states showing declining trends (Maine, 
Maryland, Massachusetts, New Hampshire, and 
Virginia) and one state (West Virginia) showing an 
increasing trend.  Three states (Maryland, 
Massachusetts, and Virginia) had declining trends for L. 
clamitans.  For L. palustris, the regional trend showed 
significant decline and three states had declining trends 
(Maryland, New York, and Virginia) while Maine 
showed an increasing trend.  Lithobates pipiens showed 
a significant decline regionally and in Maine.  Lithobates 
sphenocephalus showed significant declines in two 
states (New Jersey and Virginia) as well as regionally.  
For L. sylvaticus, Maine had a decreasing trend while 
two states (New Hampshire and Pennsylvania) had an 

increasing trend.  Two ranids, L. septentrionalis and L. 
virgatipes, had no significant trends. 

 
DISCUSSION 

 
Our study indicated that, on average, the probability of 

occurrence for anurans in the Northeast declined over 
the past decade.  Furthermore, five of the seven species 
or species complexes we found to have regional 
significant decline are considered severe or high concern 
for northeastern regional responsibility by Northeast 
Partners in Amphibian and Reptile Conservation 
(NEPARC 2010).  The NEPARC rating considers two 
factors: the number of northeastern states with the 
species included in its Wildlife Action Plans, and 
whether the Northeast comprises over 50% of the 
species distribution.  The greatest concern rating by 
NEPARC is severe concern; two species in our study (P. 
brachyphona and L. virgatipes) received this rating.  Of 
these, we found P. brachyphona to have a significant 
negative regional trend.  High concern is the next level 
on the NEPARC rating scale with four anurans receiving 
this rating: A. crepitans, A. fowleri, L. pipiens, and P.  

TABLE 3 (PART 1).  Posterior summaries (posterior mean, 2.5 and 97.5 percentiles) of occupancy trends for species/state combinations.  In bold 
are the 38 species/state combinations for which the 95% interval of the trend did not include zero.  Cells with dashes are states within the species 
range, but with fewer than 50 species detections so we considered as data insufficient.  Cells colored gray are states outside of the species range.  
Species names are abbreviated as follows: A. americanus (Aame), A. fowleri (Afow), A. crepitans (Acre), H. andersonii (Hand), H. cinerea 
(Hcin), H. versicolor-chrysoscelis complex (Hvcc), P. brachyphona (Pbra), P. crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus 
(Lcat), L. clamitans (Lcla), L. palustris (Lpal), L. pipiens (Lpip), L. septentrionalis (Lsep), L. sphenocephalus (Lsph), L. sylvaticus (Lsyl), and L. 
virgatipes (Lvir). 
 

Species 
Code 

Delaware Maine Maryland 

slope 2.5% 97.5% slope 2.5% 97.5% slope 2.5% 97.5% 

Aame 0.0058 -0.0061 0.0173 -0.0162 -0.0239 -0.0088 -0.0031 -0.0133 0.0071 

Afow -0.0056 -0.0132 0.0022       -0.0332 -0.0420 -0.0241 

Acre 0.0031 -0.0038 0.0094       -0.0388 -0.0555 -0.0241 

Hand                   

Hcin 0.0125 0.0044 0.0211       0.0026 -0.0065 0.0125 

Hvcc 0.0342 0.0247 0.0432 0.0036 -0.0013 0.0082 0.0100 0.0016 0.0182 

Pbra             - - - 

Pcru 0.0069 0.0021 0.0116 -0.0027 -0.0042 -0.0011 0.0017 -0.0019 0.0047 

Pfkc -0.0332 -0.0500 -0.0182       -0.0285 -0.0385 -0.0182 

Lcat 0.0033 -0.0055 0.0116 -0.0073 -0.0149 -0.0001 -0.0281 -0.0353 -0.0210 

Lcla -0.001 -0.010 0.0070 -0.0039 -0.0096 0.0013 -0.0170 -0.0241 -0.0097 

Lpal -0.0013 -0.0120 0.0098 0.0113 0.0029 0.0195 -0.0147 -0.0230 -0.0063 

Lpip       -0.018 -0.030 -0.005 - - - 

Lsep       -0.0031 -0.0128 0.0082       

Lsph 0.0135 -0.0006 0.0279       -0.0087 -0.0213 0.0040 

Lsyl 0.0053 -0.0061 0.0153 -0.0054 -0.0104 -0.0005 -0.0026 -0.0125 0.0079 

Lvir - - -       - - - 
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kalmi.  In our study P. kalmi is included within the P. 
feriarum-kalmi complex, and we found a significant 
negative trend regionally for these four species or 
species complexes.  Thus, further research and 
conservation efforts may be warranted for the five 
species with significant negative regional trends and a 
NEPARC rating of high or severe concern. 

Adams et al. (2013) found U.S. amphibian occupancy 
declined 3.7% annually from 2002 to 2011.  Limiting the 
Adams et al. species to those considered least concern by 
the International Union for Conservation of Nature 
(IUCN) showed a mean annual trend of -2.7%.  Of the 
17 species or species complexes in our study 16 are 
considered least concern by IUCN (Available from 
http://www.iucn.org/  [Accessed 21 June 2013]), with 
the only exception being Hyla andersonii that is listed as 
near threatened.  The Adams et al. (2013) analysis 
included salamanders and anurans, was national in focus, 
but sites were largely restricted to federal protected 
lands.  In contrast, our study is limited to anurans of the 
northeastern United States with study sites largely not in 
protected areas but rather located on random roadside 
routes.  With Adams et al.’s area of inference being 
federally protected lands and this study’s sample frame 

being lands near roads, taken together it is suggestive 
that, at least for the northeastern United States, the 
declines may encompass the larger landscape as a whole.  
Also notable, Adams et al. (2013) and this study suggest 
declines are occurring in amphibian species previously 
thought to be of little conservation concern.   

Our current analysis is a Bayesian analog of the 
likelihood method used in Weir et al. (2009) for 
estimating occupancy trajectories from NAAMP data.  
The main distinction is that using Bayesian analysis by 
Markov chain Monte Carlo method (MCMC), we can 
obtain posterior samples of the latent occupancy 
variables directly, whereas using likelihood methods the 
maximum likelihood estimates (MLEs) had to be used in 
a secondary smoothing step to provide estimates of the 
trajectory for each route, which then had to be combined 
to form a regional estimate.   

In the last decade, it has become more common to 
account for imperfect detection in ecological studies 
(MacKenzie et al. 2002; Mazerolle et al. 2007).  
Recognizing that it is typically not possible to detect 
every individual or species during a survey of a site 
(false negative), there are now many statistical 
approaches to address non-detection (MacKenzie et al. 

TABLE 3 (PART 2).  Posterior summaries (posterior mean, 2.5 and 97.5 percentiles) of occupancy trends for species/state combinations.  In bold 
are the 38 species/state combinations for which the 95% interval of the trend did not include zero.  Cells with dashes are states within the species 
range, but with fewer than 50 species detections so we considered as data insufficient.  Cells colored gray are states outside of the species range.  
Species names are abbreviated as follows: A. americanus (Aame), A. fowleri (Afow), A. crepitans (Acre), H. andersonii (Hand), H. cinerea 
(Hcin), H. versicolor-chrysoscelis complex (Hvcc), P. brachyphona (Pbra), P. crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus 
(Lcat), L. clamitans (Lcla), L. palustris (Lpal), L. pipiens (Lpip), L. septentrionalis (Lsep), L. sphenocephalus (Lsph), L. sylvaticus (Lsyl), and L. 
virgatipes (Lvir). 
 

Species 
Code 

Massachusetts New Hampshire New Jersey 

slope 2.5% 97.5% slope 2.5% 97.5% slope 2.5% 97.5% 

Aame -0.0196 -0.0311 -0.0081 0.0050 -0.0091 0.0180 0.0092 -0.0073 0.0268 

Afow - - - - - - -0.003 -0.015 0.010 

Acre             -0.0019 -0.0118 0.0053 

Hand             -0.0116 -0.0268 0.0057 

Hcin                   

Hvcc -0.0011 -0.0106 0.0079 -0.0116 -0.0229 -0.0009 0.0017 -0.0073 0.0109 

Pbra                   

Pcru -0.0033 -0.0082 0.0017 -0.0027 -0.0078 0.0014 0.0055 -0.0002 0.0113 

Pfkc             -0.0365 -0.0538 -0.0228 

Lcat -0.0118 -0.0197 -0.0041 -0.0181 -0.0290 -0.0071 -0.0003 -0.0083 0.0079 

Lcla -0.0078 -0.0155 -0.0006 -0.0013 -0.0114 0.0086 -0.0052 -0.0137 0.0035 

Lpal -0.0019 -0.0071 0.0030 -0.0031 -0.0135 0.0079 0.0016 -0.0056 0.0085 

Lpip - - - - - -       

Lsep       -0.0008 -0.0067 0.0031       

Lsph             -0.0114 -0.0239 -0.0001 

Lsyl -0.0010 -0.0129 0.0113 0.0150 0.0042 0.0258 0.0009 -0.0104 0.0123 

Lvir             0.0056 -0.0028 0.0144 
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TABLE 3 (PART 3).  Posterior summaries (posterior mean, 2.5 and 97.5 percentiles) of occupancy trends for species/state combinations.  In bold are the 38 
species/state combinations for which the 95% interval of the trend did not include zero.  Cells with dashes are states within the species range, but with fewer 
than 50 species detections so we considered as data insufficient.  Cells colored gray are states outside of the species range.  Species names are abbreviated 
as follows: A. americanus (Aame), A. fowleri (Afow), A. crepitans (Acre), H. andersonii (Hand), H. cinerea (Hcin), H. versicolor-chrysoscelis complex 
(Hvcc), P. brachyphona (Pbra), P. crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus (Lcat), L. clamitans (Lcla), L. palustris (Lpal), L. 
pipiens (Lpip), L. septentrionalis (Lsep), L. sphenocephalus (Lsph), L. sylvaticus (Lsyl), and L. virgatipes (Lvir). 
  

Species 
Code 

New York Pennsylvania Vermont 

slope 2.5% 97.5% slope 2.5% 97.5% slope 2.5% 97.5% 

Aame 0.0147 -0.0353 0.0523 -0.0016 -0.0152 0.0119 -0.0055 -0.0269 0.0156 

Afow - - - - - - - - - 

Acre - - - - - -       

Hand                   

Hcin                   

Hvcc 0.0252 -0.0084 0.0584 -0.0100 -0.0175 -0.0029 0.0030 -0.0101 0.0180 

Pbra       - - -       

Pcru 0.0075 -0.0052 0.0385 -0.0052 -0.0101 -0.0004 -0.0024 -0.0090 0.0043 

Pfkc       - - -       

Lcat 0.0129 -0.0475 0.0501 -0.0008 -0.0092 0.0085 0.0084 -0.0054 0.0214 

Lcla 0.0336 -0.0280 0.0668 -0.0041 -0.0128 0.0043 -0.0087 -0.0238 0.0059 

Lpal -0.0453 -0.0733 -0.0017 -0.0036 -0.0125 0.0052 - - - 

Lpip - - - - - - - - - 

Lsep             - - - 

Lsph - - - -0.0013 -0.0091 0.0035       

Lsyl -0.0100 -0.0624 0.0384 0.0159 0.0044 0.0272 -0.0058 -0.0253 0.0126 

Lvir                   

Virginia West Virginia 

slope 2.5% 97.5% slope 2.5% 97.5% 

Aame 0.0013 -0.0145 0.0155 0.0031 -0.0088 0.0160 

Afow -0.0067 -0.0169 0.0040 -0.0060 -0.0129 0.0008 

Acre -0.0228 -0.0367 -0.0093 - - - 

Hand             

Hcin -0.0006 -0.0216 0.0222       

Hvcc 0.0070 -0.0029 0.0162 0.0269 0.0156 0.0377 

Pbra - - - -0.0129 -0.0261 0.0003 

Pcru 0.0020 -0.0032 0.0065 0.0027 -0.0018 0.0068 

Pfkc -0.0466 -0.0589 -0.0337 -0.0213 -0.0336 -0.0067 

Lcat -0.0093 -0.0175 -0.0008 0.0071 0.0004 0.0137 

Lcla -0.0115 -0.0223 -0.0016 0.0055 -0.0027 0.0136 

Lpal -0.0183 -0.0295 -0.0053 -0.0008 -0.0045 0.0029 

Lpip       - - - 

Lsep             

Lsph -0.0217 -0.0423 -0.0033       

Lsyl - - - 0.0146 -0.0009 0.0302 

Lvir - - -       
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FIGURE 4 (PART 1).  Occupancy trend graphs for 38 species/state combinations with significant trends.  Black line is posterior mean of least 
squares trend.  The box plots depict the posterior distribution of occupied sites for each year.  The three horizontal lines of the box plots represent 
quantiles (25%, 50%, and 75% of the distribution), the smaller horizontal lines are 2.5% and 97.5%, and circles are extreme values.  Species names 
are abbreviated as follows: A. americanus (Aame), A. fowleri (Afow), A. crepitans (Acre), H. cinerea (Hcin), H. versicolor-chrysoscelis complex 
(Hvcc), P. crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus (Lcat), L. clamitans (Lcla), L. palustris (Lpal), L. pipiens (Lpip), L. 
sphenocephalus (Lsph), and L. sylvaticus (Lsyl).  States are abbreviated as: Delaware (DE), Maine (ME), Maryland (MD), Massachusetts (MA), 
New Hampshire (NH), New Jersey (NJ), New York (NY), Pennsylvania (PA), Vermont (VT), Virginia (VA), and West Virginia (WV).   
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FIGURE 4 (PART 2).  Occupancy trend graphs for 38 species/state combinations with significant trends.  Black line is posterior mean of least 
squares trend.  The box plots depict the posterior distribution of occupied sites for each year.  The three horizontal lines of the box plots represent 
quantiles (25%, 50%, and 75% of the distribution), the smaller horizontal lines are 2.5% and 97.5%, and circles are extreme values.  Species 
names are abbreviated as follows: A. americanus (Aame), A. fowleri (Afow), A. crepitans (Acre), H. cinerea (Hcin), H. versicolor-chrysoscelis 
complex (Hvcc), P. crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus (Lcat), L. clamitans (Lcla), L. palustris (Lpal), L. pipiens 
(Lpip), L. sphenocephalus (Lsph), and L. sylvaticus (Lsyl).  States are abbreviated as: Delaware (DE), Maine (ME), Maryland (MD), 
Massachusetts (MA), New Hampshire (NH), New Jersey (NJ), New York (NY), Pennsylvania (PA), Vermont (VT), Virginia (VA), and West 
Virginia (WV).   
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2006; Royle and Dorazio 2008).  False positive errors, 
when individuals or species are absent but reported as 
detected, have often been ignored or assumed 
unimportant; but this is changing (Royle and Link 2006; 
Yoshizaki et al. 2009; McClintock et al. 2010a).  Since 
the early days of anuran calling surveys, research has 
examined observer ability and variation (Shirose et al. 
1997; Genet and Sargent 2003; Lotz and Allen 2007; 
Pierce and Gutzwiller 2007).  During field experiments 
simulating calling surveys, such that true calling activity 
is known, recent studies have shown that both false 
negative and false positive errors occur in auditory 
surveys of birds (Simons et al. 2007) and amphibians 
(McClintock et al. 2010b; Miller et al. 2012).  Miller et 
al. (2012) found that USGS frog quiz scores were a good 
predictor of observer error rates.  Thus, observer frog 
quiz results, in addition to screening out unqualified 
observers, could be incorporated into future analyses to 
account for differences in observer detection for 
NAAMP surveys.  Our current approach to NAAMP 
analyses accounts for false negatives.  Accounting for 
false positive errors by incorporating the frog quiz into 
the modeling framework and determining how to handle 
data from years prior to the quiz should be the focus of 
future work.  It is well-known (Royle and Link 2006; 
Miller et al. 2011) that false positive errors produces bias 
in estimation of occupancy rate.  The bias is expected to 
be relatively more severe for lower occupancy rates and 
therefore we expect trend estimates to be biased toward 
0 in the presence of false positive errors.  As such, we 
expect that the number of significant (both positive and 
negative) trends is understated.  In this paper we report 
state and regional occupancy trends using an 11-year 
dataset from Northeast NAAMP states for 17 anuran 
species.  With continuing data collection in these and 
other participating states, NAAMP will be able to 
provide the conservation community with much needed 
information on the status of frogs and toads.  In the 
coming decades, NAAMP’s long-term dataset will be an 
important resource to the conservation and scientific 
community.   
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APPENDIX 1.  R/WinBUGS script used to model range-wide Spring Peeper data.  
 
 
###NE NAAMP Analysis for Spring Peepers ###  
#load R2WinBUGS Package  
library("R2WinBUGS") 
 
#read in Spring Peeper data 
y.orig<-read.table("Pcru.csv",na.strings=c("NULL","NA"), sep=",", header=TRUE) 
 
#subset just the data 
y<-y.orig 
y<- y[,3:200] 
y<- as.matrix(y) 
 
#read in State for each route 
state<-read.table("routes_states.csv", na.strings=c("NULL","NA"), sep=",", header=TRUE) 
state<-state[,3] 
state<-as.numeric(factor(state)) 
 
#set number of sites, year, and repetitions  
nsite<-dim(y)[1] 
nyear<-11 
nrep<-18 
 
#read in Julian date data 
julian<- read.table("juliandate.csv", na.strings=c("NULL","NA"),sep=",",header=TRUE) 
juldate<- julian[,3:200] 
juldate<- as.matrix(juldate) 
 
#read in air temperature data 
airtemp<- read.table("airtemp.csv", na.strings=c("NULL","NA"),sep=",",header=TRUE) 
airtemp<- airtemp[,3:200] 
airtemp<- as.matrix(airtemp) 
 
#Read in minutes after sunset data  
minutes<- read.table("MinAfterSunset.csv", na.strings=c("NULL","NA"),sep=",",header=TRUE) 
minutes<- minutes[,3:200] 
minutes<- as.matrix(minutes) 
 
#read in startpoints coordinates  
library(plyr) 
startpoints<- read.table("Startpoints.csv",  na.strings=c("NULL","NA"),sep=",",header=TRUE) 
 
#join based on routenumber  
startcoords<-join(y.orig, startpoints, by=intersect(names(y.orig), names(startpoints))) 
 
#subset lat lons 
lat<- startcoords[,201] 
 
#create datelat covariate  
datelat<- array(NA, dim=c(nsite,198)) 
date2lat<- array(NA, dim=c(nsite,198)) 
 
for(i in 1:nsite){ 
for(v in 1:198){ 
datelat[i,v] <- juldate[i,v]*lat[i] 
date2lat[i,v]<- juldate[i,v]*juldate[i,v]*lat[i] 
}} 
 
#normalize coordinates 
mean.lat<-mean(lat, na.rm=TRUE) 
sd.lat<-sd(lat) 
lat<-(lat-mean.lat)/sd.lat 
 



Weir et al.—Northeast anuran occupancy trends. 

238 
 

#normalize minutes after sunset 
mean.min<-mean(minutes, na.rm=TRUE) 
sd.min<-sd(minutes[!is.na(minutes)]) 
minutes<-(minutes-mean.min)/sd.min 
 
#normalize Julian date  
mean.date<- mean(juldate, na.rm=TRUE) 
sd.date<- sd(juldate[!is.na(juldate)]) 
date<-(juldate-mean.date)/sd.date 
 
#normalize temperature 
mean.temp<-mean(airtemp, na.rm=TRUE) 
sd.temp<- sd(airtemp[!is.na(airtemp)]) 
airtemp<-(airtemp-mean.temp)/sd.temp 
 
#normalize datelat 
mean.datelat<-mean(datelat, na.rm=TRUE) 
sd.datelat<- sd(datelat[!is.na(datelat)])  
datelat<- (datelat-mean.datelat)/sd.datelat  
 
#normalize date2lat 
mean.date2lat<-mean(date2lat, na.rm=TRUE) 
sd.date2lat<- sd(date2lat[!is.na(date2lat)])  
date2lat<- (date2lat-mean.date2lat)/sd.date2lat  
 
# MCMC settings 
ni <- 4000 
nt <- 1 
nb <- 2000 
nc <- 3 
 
Zst<-matrix(rbinom(nyear*nsite,1,0.5),ncol=nyear,nrow=nsite) 
 
##Create 3D matrix for species data 
 y->ytmp 
 y=array(dim=c(nsite,nrep,nyear)) 
 for(t in 1:nyear){ 
   y[,,t]=ytmp[,((t-1)*18+(1:18))] 
   } 
 
##Create 3D Matrix for covariate data  
date <- array(date, dim=c(nsite,nrep,nyear)) 
airtemp<- array(airtemp, dim=c(nsite,nrep,nyear)) 
minutes<- array(minutes,dim=c(nsite,nrep,nyear)) 
datelat <- array(datelat, dim=c(nsite,nrep,nyear)) 
date2lat <- array(date2lat, dim=c(nsite,nrep,nyear)) 
 
#to make sure all covariates have the same # of NA's 
airtemp[is.na(date) != is.na(airtemp)] <- 0 
minutes[is.na(date) != is.na(minutes)] <- 0 
 
#check # of NA's 
##species should have 608807, covariates should have 608440 
#Species should ALWAY have more NA's because of skipped stops 
sum(is.na(y)) 
sum(is.na(date)) 
sum(is.na(airtemp)) 
sum(is.na(minutes)) 
sum(is.na(lat)) 
 
#create table of number of reps for each route for each year 
nanum<-ifelse(is.na(y) == TRUE, 0, 1) 
X2001<- rowSums(nanum[,,1]) 
X2002<- rowSums(nanum[,,2]) 
X2003<- rowSums(nanum[,,3])  
X2004<- rowSums(nanum[,,4])  
X2005<- rowSums(nanum[,,5])  
X2006<- rowSums(nanum[,,6])  
X2007<- rowSums(nanum[,,7])  
X2008<- rowSums(nanum[,,8])  
X2009<- rowSums(nanum[,,9])  
X2010<- rowSums(nanum[,,10])  
X2011<- rowSums(nanum[,,11])  
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nrep<- matrix(c(X2001,X2002,X2003,X2004,X2005,X2006,X2007,X2008,X2009,X2010,X2011), ncol=11,nrow=dim(y)[1]) 
 
pst<-rep(0,nyear)   
 
#Bundle data 
data <- list ("y","nsite","nrep","nyear","state","date","airtemp","minutes","lat","datelat","date2lat") 
 
#####Set starting values for parameters 
p<- c(0.3023,0.2863,0.3700,0.3114, 0.3231, 0.3287, 0.2233, 0.4296, 0.4194, 0.3020, 0.3742) 
 
b.a<- 1.0254 
b.a2<- -0.3848 
b.d<- 2.2858 
b.d2<- -1.5479 
b.m<- 0.0531 
b.m2<- -0.0402 
b.l<- -0.0280 
b.l2<- 0.0658 
b.dl<- 1.0822 
b.d2l<- -0.6495 
 
#inital values 
inits <- function() 
  list (p0=p,z=Zst,a1=matrix(rnorm(nyear-1),nrow=11,ncol=(nyear-1),byrow=TRUE),   
        a2=0,a3=0,a4=0,a5=0,a6=0,a7=0,beta.a=b.a,beta.a2=b.a2,beta.d=b.d,beta.d2=b.d2, 
   beta.m=b.m,beta.m2=b.m2,beta.l=b.l,beta.l2=b.l2, beta.datelat=b.dl, 
   beta.date2lat=b.d2l,mod=rep(1,10) ) 
 
#Specify model in BUGS language  
sink("occ-cov_modelselection.txt") 
cat(" 
model { 
 
#Specify Priors 
for(t in 1:nyear){        
p0[t] ~ dunif(0,1) 
logitp[t]<- log(p0[t]/(1-p0[t])) 
beta.d ~ dnorm(0,.1) 
beta.a ~ dnorm(0,.1) 
beta.m ~ dnorm(0,.1) 
beta.d2 ~ dnorm(0,.1) 
beta.a2 ~ dnorm(0,.1) 
beta.m2 ~ dnorm(0,.1)  
beta.l ~ dnorm(0,.1)  
beta.l2 ~ dnorm(0,.1) 
beta.datelat ~ dnorm(0,.1) 
beta.date2lat ~ dnorm(0,.1) 
 
 
for(s in 1:11){ 
a0[s] ~ dnorm(0,.1) 
logitpsi[s] ~ dnorm(0,.1) 
logit(psi[s])<-logitpsi[s] 
for(t in 1:(nyear-1)){    
  a1[s,t]~dnorm(0,.1) 
  } 
} 
 
a2~dnorm(0,.1) 
a3~dnorm(0,.1) 
a4~dnorm(0,.1) 
a5~dnorm(0,.1) 
a6~dnorm(0,.1) 
a7~dnorm(0,.1) 
for(m in 1:10){ 
mod[m] ~ dbern(.5) 
} 
 
#State model 
for(i in 1:nsite){ 
  z[i,1]~dbern(psi[state[i]]) 
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  for(t in 2:nyear){ 
    logit(muZ[i,t])<- a0[state[i]]   +    a1[state[i],1]*z[i,t-1]     
    z[i,t]~dbern(muZ[i,t]) 
    } 
  } 
 
#Observation model  
for (t in 1:nyear){ 
  for(i in 1:nsite){ 
    for(j in 1:(nrep[i,t])){ 
 logit(p[i,j,t])<- logitp[t] + beta.d*date[i,j,t]*mod[1] + beta.a*airtemp[i,j,t]*mod[3]  
    + beta.m*minutes[i,j,t]*mod[5] + beta.m2*pow(minutes[i,j,t],2)*mod[5]*mod[6] 
    + beta.a2*pow(airtemp[i,j,t],2)*mod[4]*mod[3] + beta.d2*pow(date[i,j,t],2)*mod[1]*mod[2] 
    + beta.l*lat[i]*mod[7] + beta.l2*pow(lat[i],2)*mod[7]*mod[8]  
    + beta.datelat*datelat[i,j,t]*mod[1]*mod[7]*mod[9] +  
    beta.date2lat*date2lat[i,j,t]*mod[1]*mod[2]*mod[7]*mod[10] 
      Py[i,j,t]<- z[i,t]*p[i,j,t] 
      y[i,j,t] ~ dbern(Py[i,j,t])          } 
    } 
  } 
 
for(i in 1:nsite){ 
for(s in 1:11){ 
X[i,s]<-equals(state[i],s) 
} 
} 
 
for(s in 1:11){ 
for (t in 1:nyear){  
 N[s,t]<- inprod(z[,t],X[,s]) 
} 
} 
} 
",fill = TRUE) 
sink() 
 
#Parameters monitored  
parameters <- c("logitp","a0","a1","a2","a3","a4","a5","a6","a7","beta.d","beta.a", 
 "beta.m","N","beta.d2","beta.a2","beta.m2","beta.l","beta.l2","beta.datelat", "beta.date2lat","mod") 
 
#Call WinBUGS from R 
out_ms_Pcru<- bugs (data, inits, parameters, "occ-cov_modelselection.txt", n.thin=nt,n.chains=nc, n.burnin=nb,n.iter=ni,debug=TRUE) 
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APPENDIX 2. For each of the 17 species the top 10 models (in terms of posterior probability) are reported below. These variables include Julian
date, air temperature, minutes after sunset, latitude, date-latitude interaction, and the quadratic versions of each (denoted by superscript). A 
value of 1 in the table indicates that the variable is in the model, and a value of 0 indicates it is not. Species names are abbreviated in the table 
as follows: A. americanus (Aame), A. fowleri (Afow), A. crepitans (Acre), H. andersonii (Hand), H. cinerea (Hcin), H. versicolor-chrysoscelis 
complex (Hvcc), P. brachyphona (Pbra), P. crucifer (Pcru), P. feriarum-kalmi complex (Pfkc), L. catesbeianus (Lcat), L. clamitans (Lcla), L. 
palustris (Lpal), L. pipiens (Lpip), L. septentrionalis (Lsep), L. sphenocephalus (Lsph), L. sylvaticus (Lsyl), and L. virgatipes (Lvir). 

 

Species 
code Date Date2 Airtemp Airtemp2 Minutes Minutes2 Latitude Latitude2 

Date-
Lat 

Date2 
-Lat 

Posterior 
Probability 

Aame 

1 1 1 0 1 1 0 0 0 0 0.8192 

1 1 1 1 1 1 0 0 0 0 0.1778 

1 1 1 0 1 1 1 0 0 0 0.0030 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

Afow 

0 1 1 1 1 0 1 1 0 0 0.3375 

1 1 1 1 1 1 1 1 0 0 0.3317 

0 1 1 1 1 0 0 0 0 0 0.3292 

1 1 1 1 1 1 1 1 0 1 0.0017 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

Acre 

0 1 1 1 1 0 1 1 0 0 0.3023 

0 1 1 1 1 0 0 0 0 0 0.3005 

1 1 1 1 0 0 0 0 0 0 0.2355 

1 0 1 1 0 0 0 0 0 0 0.0823 

1 1 1 1 1 0 0 0 0 0 0.0342 

1 1 0 0 1 0 0 0 0 0 0.0170 

1 1 0 0 0 0 0 0 0 0 0.0085 

1 1 1 0 1 0 0 0 0 0 0.0072 

1 1 1 0 0 0 0 0 0 0 0.0035 

0 1 1 1 1 0 1 0 0 0 0.0025 

Hand 

1 1 0 0 0 1 0 0 0 0 0.2983 

1 1 0 0 1 1 0 0 0 0 0.1965 

1 1 0 0 0 1 1 0 1 0 0.0965 
 
1 1 0 0 0 1 1 1 1 0 0.0778 

1 1 0 0 0 1 1 0 1 1 0.0505 
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1 1 0 0 0 1 1 1 1 1 0.0455 

1 0 0 0 0 1 0 0 0 0 0.0413 

1 1 0 0 0 1 1 0 0 0 0.0360 

1 1 0 0 0 1 1 1 0 0 0.0305 

1 1 0 0 1 1 1 1 0 0 0.0220 

Hcin 

1 1 0 0 0 1 1 0 1 0 0.2242 

1 1 0 0 0 1 1 1 1 0 0.2032 

1 1 0 0 0 1 1 1 0 0 0.1697 

1 1 0 0 0 1 0 0 0 0 0.1513 

1 1 0 0 0 1 1 0 0 0 0.1215 

1 1 0 0 0 1 1 1 0 1 0.0555 

1 1 0 0 0 1 1 0 1 1 0.0132 

1 1 0 0 0 1 1 1 1 1 0.0115 

1 1 0 0 1 1 1 0 1 0 0.0093 

1 1 0 0 1 1 1 1 1 0 0.0092 

Hvcc 

1 1 1 1 1 1 1 1 0 0 0.6365 

1 1 1 1 1 1 1 1 1 0 0.3033 

1 1 1 0 1 1 1 1 1 0 0.0397 

1 1 1 1 1 1 1 1 0 1 0.0128 

1 1 1 1 1 1 1 1 1 1 0.0028 

1 1 0 0 1 1 1 1 1 0 0.0020 

1 1 1 0 1 1 1 1 1 1 0.0015 

1 1 1 0 1 1 1 1 0 0 0.0013 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

Pbra 

1 1 0 0 1 1 1 0 0 0 0.3325 

1 1 0 0 1 1 1 0 1 0 0.2807 

1 1 0 0 1 1 1 1 0 1 0.1800 

1 1 0 0 1 1 1 1 1 1 0.0630 

1 1 0 0 1 1 1 1 0 0 0.0593 

1 1 0 0 1 1 1 0 0 1 0.0455 

1 1 0 0 1 1 1 1 1 0 0.0310 

1 1 1 0 1 1 1 0 0 0 0.0077 

1 1 0 0 0 1 1 0 0 1 0.0002 

1 1 1 0 1 1 1 0 1 0 0.0002 

Pcru 

1 1 1 0 1 1 1 1 0 0 0.5642 

1 1 0 0 1 1 1 1 0 0 0.4092 

1 1 1 0 1 1 1 1 0 1 0.0153 

1 1 0 0 1 1 1 1 0 1 0.0058 

1 1 0 0 1 1 1 1 1 0 0.0025 

1 1 1 0 1 1 1 1 1 0 0.0017 

1 1 1 1 1 1 1 1 0 0 0.0013 
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‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

Pfkc 

1 1 0 0 0 1 0 0 0 0 0.4888 

1 1 0 0 0 0 0 0 0 0 0.3038 

1 0 0 0 0 0 0 0 0 0 0.1372 

1 0 0 0 0 1 0 0 0 0 0.0300 

1 1 0 0 1 1 0 0 0 0 0.0100 

1 1 0 0 0 0 1 0 0 0 0.0078 

1 1 0 0 0 1 1 0 0 0 0.0075 

1 0 0 0 0 0 1 0 0 0 0.0045 

1 1 1 0 0 1 0 0 0 0 0.0033 

1 1 0 0 1 0 0 0 0 0 0.0027 

Lcat 

1 1 1 0 1 1 1 0 1 0 0.6153 

1 1 1 0 1 1 1 0 0 0 0.1338 

1 1 1 0 1 1 1 0 1 1 0.1215 

1 1 1 0 1 1 1 1 1 0 0.0878 

1 1 1 0 1 1 1 1 0 0 0.0247 

1 1 1 0 1 1 1 1 1 1 0.0065 

1 1 1 1 1 1 1 0 1 0 0.0057 

1 1 1 0 1 1 1 0 0 1 0.0033 

1 1 1 1 1 1 1 1 1 0 0.0012 

1 1 1 1 1 1 1 0 1 1 0.0002 

Lcla 

1 1 0 0 0 1 1 0 1 1 0.1558 

1 1 0 0 0 0 1 0 1 1 0.1553 

1 1 0 1 0 0 1 0 1 1 0.1553 

1 1 0 1 0 1 1 0 1 1 0.1552 

1 1 0 1 0 0 0 0 1 1 0.0122 

1 1 0 1 0 0 0 1 1 0 0.0115 

1 1 0 1 0 0 0 0 0 1 0.0113 

1 1 0 0 0 0 0 0 1 1 0.0112 

1 1 0 1 0 1 0 1 1 0 0.0112 

1 1 0 1 0 1 0 0 0 1 0.0107 

Lpal 

1 1 0 0 0 1 1 0 1 1 0.1558 

1 1 0 0 0 0 1 0 1 1 0.1553 

1 1 0 1 0 0 1 0 1 1 0.1553 

1 1 0 1 0 1 1 0 1 1 0.1552 

0 0 0 0 0 0 1 0 0 0 0.0282 

0 0 0 0 0 0 1 1 0 0 0.0263 

1 1 0 1 0 0 0 0 1 1 0.0122 

1 1 0 0 0 0 0 0 1 1 0.0112 

1 1 0 1 0 1 0 1 1 0 0.0112 
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1 1 0 1 0 1 0 0 0 1 0.0107 

Lpip 

1 0 0 0 0 1 0 0 0 0 0.3420 

1 0 0 0 0 1 1 1 0 0 0.3073 

1 0 0 0 0 1 1 0 0 1 0.1375 

1 0 0 0 0 1 1 1 1 0 0.0747 

1 0 0 0 0 1 1 1 0 1 0.0542 

1 0 0 0 0 1 1 0 0 0 0.0228 

1 0 0 0 0 1 1 1 1 1 0.0153 

1 0 0 0 0 1 1 0 1 1 0.0087 

1 0 0 0 0 1 1 0 1 0 0.0070 

1 1 0 0 0 1 0 0 0 0 0.0068 

Lsep 

1 1 1 0 1 0 1 1 0 1 0.1110 

1 1 1 0 1 0 1 0 0 0 0.1043 

1 1 1 0 0 1 1 1 0 1 0.0608 

1 1 1 0 0 0 1 1 0 1 0.0560 

1 1 1 0 1 0 1 1 0 0 0.0520 

1 1 1 0 0 0 1 0 0 0 0.0442 

1 1 1 0 0 1 1 0 0 0 0.0408 

1 1 1 0 1 0 1 0 1 0 0.0295 

1 1 1 1 1 0 1 0 0 0 0.0218 

1 1 1 1 1 0 1 0 1 0 0.0215 

Lsph 

1 0 1 0 0 1 1 0 1 0 0.2773 

1 0 1 1 0 1 1 0 0 0 0.2368 

1 0 0 0 0 1 1 0 1 0 0.1015 

1 0 1 1 0 1 1 0 1 0 0.0738 

1 0 1 0 0 1 1 0 0 0 0.0645 

1 0 1 0 0 1 1 1 1 0 0.0622 

1 0 1 0 0 1 1 0 1 1 0.0445 

1 1 0 0 1 1 1 0 1 0 0.0412 

1 0 0 0 0 1 1 1 1 0 0.0218 

1 0 1 1 0 1 1 1 0 0 0.0198 

Lsyl 

1 1 1 0 1 0 1 1 0 1 0.2488 

1 1 1 0 0 0 1 1 0 1 0.1892 

1 1 1 0 0 1 1 1 0 1 0.1753 

1 1 1 0 1 0 1 0 0 0 0.084 

1 1 1 0 0 0 1 0 0 0 0.0778 

1 1 1 0 0 1 1 0 0 0 0.074 

1 1 1 0 1 0 1 1 0 0 0.0255 

1 1 1 0 0 1 1 1 0 0 0.0247 

1 1 1 0 0 0 1 1 0 0 0.0233 

1 1 1 1 1 0 1 1 0 1 0.0167 

Lvir 1 0 0 0 0 1 0 0 0 0 0.2618 
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1 1 0 0 1 1 0 0 0 0 0.2170 

1 1 1 0 1 1 0 0 0 0 0.1843 

1 0 1 0 0 1 0 0 0 0 0.1780 

1 1 1 1 1 1 0 0 0 0 0.0620 

1 1 0 0 0 1 0 0 0 0 0.0430 

1 1 1 0 0 1 0 0 0 0 0.0385 

1 0 1 1 0 1 0 0 0 0 0.0082 

1 1 0 0 1 1 1 1 1 0 0.0022 

1 1 1 0 1 1 1 1 1 0 0.0017 
 
 
 
 
 
 
 
 
 


